A Bundle Interior Proximal Method for Solving Convex Minimization Problems
نویسندگان
چکیده
In this paper we extend the standard bundle proximal method for finding the minimum of a convex not necessarily differentiable function on the nonnegative orthant. The strategy consists in approximating the objective function by a piecewise linear convex function and using distance–like functions based on second order homogeneous kernels. First we prove the convergence of this new bundle interior proximal method under the same assumptions as for the standard bundle method and then we report some preliminary numerical experiences for a particular distance function.
منابع مشابه
A Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملA Doubly Inexact Interior Proximal Bundle Method for Convex Optimization
We propose a version of bundle method for minimizing a non-smooth convex function. Our bundle method have three features. In bundle method, we approximate the objective with some cutting planes and minimize the model with some stabilizing term. Firstly, it allows inexactness in this minimization. At the same time, evaluations of the objective and the subgradient are also required to generate th...
متن کاملRandomized block proximal damped Newton method for composite self-concordant minimization
In this paper we consider the composite self-concordant (CSC) minimization problem, which minimizes the sum of a self-concordant function f and a (possibly nonsmooth) proper closed convex function g. The CSC minimization is the cornerstone of the path-following interior point methods for solving a broad class of convex optimization problems. It has also found numerous applications in machine le...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملA Bundle Method for Solving Convex Non-smooth Minimization Problems
Numerical experiences show that bundle methods are very efficient for solving convex non-smooth optimization problems. In this paper we describe briefly the mathematical background of a bundle method and discuss practical aspects for the numerical implementation. Further, we give a detailed documentation of our implementation and report about numerical tests.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005